Manufacturer: | Scratch |
Brief:
I have been dreaming of building a flight computer that will not only control the flight sequence, but also log data
aboard a model rocket. However, I do need to walk before I can run, so I started with a simple GPS data logger (GPSDL)
that is just a "piece" of my future flight computer idea. This GPSDL will sit in a payload bay or nosecone of
a rocket during flight.
My finished GPSDL weighs 62 grams with the power supply and has a 1.5"L x 3"W x 1"D footprint. The weight of the data logger can be further reduced by ¼oz to ½oz by using a simpler GPS antennae than the one I used. Cost can run from $100 to $200 depending on how careful a shopper you are. My cost was $200 for the parts used in this article.
The design is simple consisting of three major parts: a 5.5g accelerometer switch, a BS2p microcontoller, and a GPS receiver. A parts list, pictures, source code, and a schematic are included in this article.
The GPSDL records the date, time, latitude, longitude, altitude, speed, heading in degrees, and number of satellites that are in communication with the receiver every second for a total of 5 minutes. The source code provided will record two 5-minute flights before you have to download the data. This is completely customizable for any number of flights or a single 12-minute flight. The comments in the source code explain not only how to make this flight time change, but also what the program is doing throughout its runtime. The source code was split into two programs to maximize the amount of data that could be stored, negating the need for a separate EEPROM. The first program parses the GPRMC and GPGGA GPS sentences for the data points and writes them to memory. Post flight, the second program is downloaded to read the data points stored in memory and prints them to your PC screen. The data points are finally copied/pasted into a spreadsheet for conversions and graphing.
Construction:
Parts list:
Build steps:
Data Recording Source Code:
CLICK HEREData Reader Source Code:
CLICK HERESchematic:
Flight:
Prior to launch, the only communication there is between you and the GPSDL is the blinking LED included on the GPS
antennae PCB. A flashing LED means less than 3 satellites are acquired, a steady "on" LED signals that the
antennae has acquired at least 3 of the 12 satellites available. Once you have visual that three or more satellites are
acquired, the GPSDL is loaded into the rocket. At liftoff, the 5.5g normally open, non-latching accelerometer switch is
momentarily tripped signaling the microcontroller to log 20 bytes of GPS data every second for 5 minutes. Once 5
minutes is up, it automatically resets itself to take another 5 minutes of data once the accelerometer switch is
tripped again. You can record two 5 minute flights before data will need to be downloaded or you will overwrite the
data already collected. The power supply is a 300 mAh 7.4V Li-Po battery. The GPSDL needs a steady diet of 5V, and it
will run for approximately 3 hours on a full charge with this battery. No data is lost if power is lost. The only way
data can be lost is if it is overwritten. GPS signals will travel through plastic, glass and cardboard: the staples of
model rocketry. The only things that will block the signal is concrete, metals, or in the form of heavy rain or
snow--H20. The antennae tested showed excellent Rx, even in a crowded, "signal noisy" urban
environment where I live.
Unfortunately, I have not been able to test the GPSDL with an actual rocket launch. That will happen in the weeks to come. To run the GPSDL I shake it by hand to trip the accelerometer switch and take data from my dashboard as I drive. The GPSDL works flawlessly at this point. I will post not only real flight data but a video of its maiden flight to my website soon. I would appreciate any feedback on improvements to my source code or circuit, particularly in reducing its size or weight.
Summary:
Online resources for more information: